56 research outputs found

    High-order regularized regression in Electrical Impedance Tomography

    Full text link
    We present a novel approach for the inverse problem in electrical impedance tomography based on regularized quadratic regression. Our contribution introduces a new formulation for the forward model in the form of a nonlinear integral transform, that maps changes in the electrical properties of a domain to their respective variations in boundary data. Using perturbation theory the transform is approximated to yield a high-order misfit unction which is then used to derive a regularized inverse problem. In particular, we consider the nonlinear problem to second-order accuracy, hence our approximation method improves upon the local linearization of the forward mapping. The inverse problem is approached using Newton's iterative algorithm and results from simulated experiments are presented. With a moderate increase in computational complexity, the method yields superior results compared to those of regularized linear regression and can be implemented to address the nonlinear inverse problem

    Fast-Convergent Dynamics for Distributed Resource Allocation Over Sparse Time-Varying Networks

    Full text link
    In this paper, distributed dynamics are deployed to solve resource allocation over time-varying multi-agent networks. The state of each agent represents the amount of resources used/produced at that agent while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by reducing the total cost functions subject to fixed amount of total resources. The information of each agent is restricted to its own state and cost function and those of its immediate neighbors. This is motivated by distributed applications such as in mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. The non-Lipschitz dynamics proposed in this work shows fast convergence as compared to the linear and some nonlinear solutions in the literature. Further, the multi-agent network connectivity is more relaxed in this paper. To be more specific, the proposed dynamics even reaches optimal solution over time-varying disconnected undirected networks as far as the union of these networks over some bounded non-overlapping time-intervals includes a spanning-tree. The proposed convergence analysis can be applied for similar 1st-order resource allocation nonlinear dynamics. We provide simulations to verify our results

    D-SVM over Networked Systems with Non-Ideal Linking Conditions

    Full text link
    This paper considers distributed optimization algorithms, with application in binary classification via distributed support-vector-machines (D-SVM) over multi-agent networks subject to some link nonlinearities. The agents solve a consensus-constraint distributed optimization cooperatively via continuous-time dynamics, while the links are subject to strongly sign-preserving odd nonlinear conditions. Logarithmic quantization and clipping (saturation) are two examples of such nonlinearities. In contrast to existing literature that mostly considers ideal links and perfect information exchange over linear channels, we show how general sector-bounded models affect the convergence to the optimizer (i.e., the SVM classifier) over dynamic balanced directed networks. In general, any odd sector-bounded nonlinear mapping can be applied to our dynamics. The main challenge is to show that the proposed system dynamics always have one zero eigenvalue (associated with the consensus) and the other eigenvalues all have negative real parts. This is done by recalling arguments from matrix perturbation theory. Then, the solution is shown to converge to the agreement state under certain conditions. For example, the gradient tracking (GT) step size is tighter than the linear case by factors related to the upper/lower sector bounds. To the best of our knowledge, no existing work in distributed optimization and learning literature considers non-ideal link conditions

    Parametric Level Set Methods for Inverse Problems

    Full text link
    In this paper, a parametric level set method for reconstruction of obstacles in general inverse problems is considered. General evolution equations for the reconstruction of unknown obstacles are derived in terms of the underlying level set parameters. We show that using the appropriate form of parameterizing the level set function results a significantly lower dimensional problem, which bypasses many difficulties with traditional level set methods, such as regularization, re-initialization and use of signed distance function. Moreover, we show that from a computational point of view, low order representation of the problem paves the path for easier use of Newton and quasi-Newton methods. Specifically for the purposes of this paper, we parameterize the level set function in terms of adaptive compactly supported radial basis functions, which used in the proposed manner provides flexibility in presenting a larger class of shapes with fewer terms. Also they provide a "narrow-banding" advantage which can further reduce the number of active unknowns at each step of the evolution. The performance of the proposed approach is examined in three examples of inverse problems, i.e., electrical resistance tomography, X-ray computed tomography and diffuse optical tomography
    • …
    corecore